RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

Completed Technology Project (2011 - 2013)

Project Introduction

In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized digital EVA radio applications. In Phase I, we have proven the feasibility of implementing a compact, low power and high performance S band receiver front end based on CMOS- MEMS components. Specifically, we conducted link budget analysis to define the radio requirements for different applications, including low data rate voice, data/telemetry and high data rate, high definition video transceiving. We also identified and optimized the receiver front end architecture (i.e. a low-IF architecture), and analyzed its electrical performance based on known properties of individual CMOS- MEMS components. Finally, we fabricated two key components, a high quality factor MEMS band pass filter and a mixer-filter, and validated their performances. Phase II will be focusing on performance improvements of individual device and the whole receiver front end. We will also implement a fully integrated receiver based on the radio- on- a-chip solution, and characterize its performance.

Primary U.S. Work Locations and Key Partners

RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

Completed Technology Project (2011 - 2013)

Organizations Performing Work	Role	Туре	Location
AlphaSense, Inc.	Lead Organization	Industry Women-Owned Small Business (WOSB)	Wilmington, Delaware
Johnson Space Center(JSC)	Supporting Organization	NASA Center	Houston, Texas

Primary U.S. Work Locations	
Delaware	Texas

Project Transitions

0

June 2011: Project Start

December 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139286)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

AlphaSense, Inc.

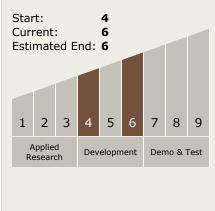
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Xin Zhang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

Completed Technology Project (2011 - 2013)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

